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Abstract

An independent set of a graph G = (V, E) with vertices V and edges E
is a subset S ⊆ V, such that the subgraph induced by S does not contain any
edges. The goal of the maximum independent set problem (MIS problem) is to
find an independent set of maximum size. It is equivalent to the well-known
vertex cover problem (VC problem) and maximum clique problem.

This thesis consists of two main parts. In the first one we compare the
currently best algorithms for finding near-optimal independent sets and vertex
covers in large, sparse graphs. They are Iterated Local Search (ILS) by Andrade
et al. [2], a heuristic that uses local search for the MIS problem and NuMVC
by Cai et al. [6], a local search algorithm for the VC problem. As of now, there
are no methods to solve these large instances exactly in any reasonable time.
Therefore these heuristic algorithms are the best option.

In the second part we analyze a series of techniques, some of which lead to a
significant speed up of the ILS algorithm. This is done by removing specific ver-
tices and structures within the graph, which have a low probability of being part
of the MIS. These are vertices of high degree, vertices within dense subgraphs
or the like. In addition, we analyze the behavior of the ILS algorithm when
inserting the cut vertices back into the graph. We also perform exact reductions
which reduce the graph’s complexity without destroying information about the
MIS. We can revert them after running ILS on the reduced graph.

We present the experimental results of the comparison of ILS and NuMVC,
as well as the improvement of ILS by removing vertices and the like. The used in-
stances are known graphs from literature like road maps, social networks, meshes
and web graphs.



Zusammenfassung

Eine unabhängige Menge eines Graphen G = (V, E) mit Knotenmenge V
und Kantenmenge E ist eine Teilmenge S ⊆ V, so dass der durch S induzierte
Teilgraph keine Kanten enthält. Das Ziel des Maximum Independent Set Prob-
lems (MIS Problem) besteht darin, unter allen unabhängigen Mengen die Menge
mit maximaler Mächtigkeit zu finden. Es ist äquivalent zu den bekannten Prob-
lemen Vertex Cover (VC ) und Maximum Clique.

Diese Arbeit besteht aus zwei Hauptteilen. Im ersten Teil vergleichen wir
die zurzeit besten heuristischen Algorithmen zum Finden von nahezu optimalen
unabhängigen Mengen und Vertex Covers in großen, wenig dichten Graphen.
Diese sind Iterated Local Search (ILS) von Andrade et al. [2], eine Heuris-
tik, die per lokaler Suche das MIS Problem angeht, sowie NuMVC von Cai
et al. [6], ein lokaler Suchalgorithmus für das VC Problem. Derzeitige Metho-
den ermöglichen es noch nicht, diese großen Instanzen exakt zu lösen, weshalb
wir auf Näherungslösungen zurückgreifen müssen.

Im zweiten Hauptteil analysieren wir eine Reihe von Techniken unter de-
nen einige eine signifikante Beschleunigung des ILS-Algorithmus erzielen. Dies
geschieht durch das Entfernen bestimmter Knoten und Strukturen, welche eine
geringe Wahrscheinlichkeit haben, in der maximalen unabhängigen Menge (MIS)
zu liegen. Hierbei handelt es sich um Knoten mit hohem Grad, Knoten innerhalb
von dichten Teilgraphen oder Ähnlichem. Ebenso untersuchen wir das Verhal-
ten des ILS-Algorithmus beim Einfügen der entfernten Knoten zurück in den
Graph. Desweiteren führen wir exakte Reduktionen durch, welche den Graph
vereinfachen ohne Informationen über das MIS zu zerstören. Diese Reduktionen
lassen sich nach der Durchführung von ILS rückgängig machen.

Wir stellen die experimentellen Ergebnisse des Vergleiches von ILS und
NuMVC, sowie der Verbesserung von ILS durch Knotenentfernungen und der-
gleichen vor. Die verwendeten Instanzen sind bekannte Graphen aus der Lite-
ratur wie Straßennetze, soziale Netzwerke, Meshes oder Webgraphen.
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1 Introduction

1. Introduction

1.1. Motivation

The maximum independent set (MIS) problem or the closely related problems can be
very helpful to solve graph-based problems. Improvements in one problem type directly
lead to improvements in the related types. One important graph-related task is resource
scheduling. Imagine a graph where vertices are machines that require maintenance to func-
tion properly. Due to limited space and personnel in the maintenance hall the goal is to
tightly pack as many machines as possible in the building such that the repairmen can
quickly check them. However, there is the restriction that certain machines cannot be
checked at the same time since they require the same replacement parts or cause two much
heat together making the work impossible. These restrictions are represented by edges.
Moreover, the company can currently only afford one such maintenance session so it must
be as beneficial as possible. The goal of finding the largest set of vertices without any edges
connecting them is reached by finding the MIS. The MIS problem and related problems
have many applications spanning disciplines such as information retrieval, signal transmis-
sion or aligning DNA and protein sequences [14]. Another application is to label maps
efficiently [12]. Since these problems are NP-hard [10], it is unlikely that a fast polynomial
algorithm will be found. Thus, only small instances can be solved exactly in a reasonable
time frame, usually via a branch-and-bound algorithm like MCS by Tomita et al. [25], the
bit parallel algorithms by San Segundo et al. [22], [23] or the branch-and-reduce algorithm
by Akiba et al. [1]. Still, in many cases it is “good enough” to find an approximate solution
if we can do so fast. If the instances reach massive sizes there usually is no other option
than heuristic methods. Therefore, the focus should be on increasing the speed of heuristic
algorithms for this problem which we are aiming for in this thesis.

The current state-of-the-art algorithms for the MIS problem and the closely related VC
problem are the local search algorithms ILS by Andrade et al. [2] and NuMVC by Cai et
al. [6] respectively. They both are heuristic algorithms that are not expected to give exact
results but achieve near-optimal results. ILS repeatedly attempts to increase its solution by
taking out one vertex of it and inserting two vertices instead. Similarly, NuMVC, aiming for
the smallest solution size, takes out a vertex which most likely results in an invalid vertex
cover. It then proceeds to swap a solution vertex with a non-solution vertex until it reaches
a valid vertex cover. In many instances both algorithms deliver near-optimal solutions for
their respective problems. However, there is room for improvement as very large sparse
graphs cause difficulties. These lead to slowdowns and potentially worse solution sizes and
have not been taken into account yet.

1.2. Our Results

Despite the strong connection of the MIS and VC problem, no comparison between
ILS and NuMVC has been done yet. We take care of that in this thesis. Additionally, our
experiments show that in very large networks few specific vertices slow down local search
algorithms. Our algorithms tackle this difficulty to achieve improved computation times for
huge graphs. As real-world graphs are continually getting more massive, this optimization
is of great significance. We experiment with different strategies to boost local search. One
method is to remove the unlikely candidates before running the local search algorithm.
We try removing vertices of high degree, vertices within a dense neighborhood or of high
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1 Introduction

centrality. But also a multitude of other factors are taken into consideration and examined
in this thesis. We found the removal of vertices with a high degree, which have a low
probability of being in the MIS, to be the most promising. Another strategy is to insert
these cut vertices back into the graph step by step as soon as ILS reaches a tolerable result
on the cut graph. This prevents ILS from completely ignoring vertices that have a low
probability of being in the MIS. This method allows us to cut a larger portion of the graph
which leads to a better speed up of the algorithm while still achieving the near-optimal
solutions we get from smaller removals. Our final strategy is to run exact reductions that
minimize a graph to its kernel and then run ILS. The reductions reduce the workload that
ILS has to do so that it can focus on the critical areas of the graph.

1.3. Related Work

Due to their importance in both theory and practice, the MIS, VC and MC problems
have been widely studied [5, 7, 18, 19, 8]. The MIS problem is NP-hard [15] and therefore
may require an exponential amount of time for finding an optimal solution. One of the most
successful techniques in recent years is local search. Local search algorithms are not exact
but can reach near-optimal solutions quickly. They use simple operations such as swapping
candidate vertices in and out of the current solution to reach neighboring solutions of the
search space. Like with other meta-heuristics, from time to time the solution is perturbed
which usually leads to a worse temporary solution but may open the path out of a local
maximum. We focus on the local search algorithms of Andrade et al. [2] and Cai et al. [6]
which are the current state-of-the-art algorithms for the MIS problem and VC problem,
respectively. The former algorithm uses diversification techniques by Grosso et al. [13] as a
base for departing from local maxima. There are also other works using the ILS algorithm of
Andrade et al. [2] as basis for further improvements. Lamm et al. [16, 17] use evolutionary
algorithms and graph partitioning. The evolutionary algorithms deal with holding more than
one single current solution at once which produce offspring results with small changes. Then
the profits of this new generation of results are examined to select members among them.
The selected results then iteratively produce the following generations. These methods
are combined with graph partitioning that allows to quickly exchange larger blocks of the
independent sets. Lamm et al. [17] also use the reductions of Akiba et al. [1] to reduce the
graph to its kernel without a loss of information considering the MIS. We describe these
reductions in-depth in Section 4.3 where we use them ourselves.

1.4. Organization of this Thesis

This thesis is structured as follows: In Section 2 we introduce the definitions and ter-
minology we use. The main two state-of-the-art algorithms for our topic, ILS and NuMVC,
are described in detail in Section 3. The majority of this thesis is devoted to the cutting
algorithms in Section 4, followed by our experiments in Section 5. They compare ILS and
NuMVC and attempt to improve their performance on large sparse graphs with the cutting
techniques. Lastly, concluding remarks are presented in Section 6.
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2 Preliminaries

2. Preliminaries
An undirected graph G = (V, E) consists of a vertex set (node set) V and an edge set E,
where each undirected edge e = {u, v} ∈ E, u, v ∈ V connects vertex u with v and vice
versa. The vertices u and v are called endpoints of e. If two vertices are connected by
an edge they are called adjacent. We denote the number of vertices by n = |V | and the
number of edges by m = |E |. The set of neighbors (neighborhood) of a vertex v ∈ V is
defined as N(v) = {u ∈ V | {u, v} ∈ E}. Next, the neighborhood of a set S of vertices
is defined as N(S) = {u ∈ V | u ∈ N(x), x ∈ S} \ S. When we want to include S in the
neighborhood we use the definition N [S] = N(S)∪S. The degree of a vertex v ∈ V is defined
as deg(v) = |N(v)|. We denote the maximum degree of a graph by ∆. An undirected graph
is called simple if there exist no self loops or parallel edges. In addition, the complement of
a graph G is defined as Ḡ = (V, Ē) where Ē is the set of edges not present in G. A graph
G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V , E ′ ⊆ E and every edge in E ′ connects
two vertices u, v ∈ V ′. The subgraph G′ of G induced by S ⊆ V is the graph G′ = (S,E ′)
where E ′ = {{u, v} ∈ E | u, v ∈ S}. The k-core of an undirected graph G is the largest
subset V ′ ⊆ V , such that deg(v) ≥ k for all vertices v in the graph induced by V ′. The core
number of a vertex v is the highest number x such that v lies in the x-core.

Given a simple undirected graph G = (V, E), an independent set is a subset S ⊆ V, such
that there are no two adjacent vertices in S. An independent set is called maximal if it is
not a subset of a larger independent set of G. The maximum independent set (MIS) problem
is to find the independent set S in G with the highest cardinality |S |. The MIS problem is
closely related to the minimum vertex cover (VC ) problem, which is to find a subset S̃ ⊆ V
with minimal cardinality, such that every edge e ∈ E has at least on endpoint in S̃ . If at
least one of an edge’s endpoints lies withing S̃ , then the edge is called covered. Otherwise
it is called uncovered. Given an optimal or approximate solution S̃ for the minimum VC
problem, S = V \ S̃ is an optimal or approximate solution for the MIS problem and vice
versa. It is easy to see that the minimum VC problem is NP-hard as well. As a side note,
another related problem is the maximum clique problem which is to find the largest complete
subgraph of a graph (a subgraph of size k where each vertex has degree k-1). Given an MIS,
the same set of vertices is a maximum clique in the complementary graph. While this has
many applications we only focus on the MIS and VC problem in this thesis.
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3 ILS and NuMVC

3. ILS and NuMVC

In this section we explain the main two state-of-the-art algorithms ILS [2] and NuMVC [6]
which can be used to find large independent sets in practice and typically find exact solutions
in smaller data sets.

3.1. Iterated Local Search (ILS)

The ILS algorithm by Andrade et al. [2] quickly finds near-optimal independent sets
in large, sparse graphs. This local search algorithm uses (1,2)-swaps or 2-improvements to
gradually increase the size of the current solution. This is done by taking one vertex out
of the solution and inserting two vertices into the solution. In general, a (j, k)-swap takes
out j vertices and inserts k vertices. A vertex is called k-tight, if exactly k of its neighbors
lie in the solution. A 2-improvement can be applied if the inserted vertices x , y are 1-tight
vertices with common neighbor v, which is to be removed from the solution. A 0-tight ver-
tex is called free and can be added to the solution without any restrictions. A pseudocode
representation of ILS and the 2-improvement can be seen in Algorithm 1. ILS stores the
tightness for each vertex and updates it after each swap. The local search iterates over all
vertices v ∈ V and computes the set of 1-tight neighbors which, by definition, only have v
as their neighbor in the solution. If there are at least two candidates which are not adja-
cent then the 2-improvement can be applied. Afterwards, the tightness of v’s neighbors is
decreased by one and the tightness of the inserted vertices’s neighbors are increased by one.

The data structure used for maintaining the current solution is an array partitioned
into three sections, see Figure 1. The first section holds the solution vertices followed by
free vertices in the second section and non-free vertices in the last section. A non-free vertex
has a tightness greater or equal to 1. The array is used as a permutation of the vertices
therefore an additional array that holds every vertex’s position within the permutation is
needed. Furthermore, the sizes of the first and second of the permutation’s sections are
explicitly stored. This way, moving a vertex from one section to another can be performed
in linear time by swapping it with a specific vertex and adjusting the size variables. The
time for insertion or removal of a vertex into or out of the solution is proportional to its
degree. The reason being that the algorithm needs to check every neighbor for adjusting its
tightness and potentially moving it from the second to third section or vice versa.

Andrade et al. [2] proved that, given a maximal solution, which means that all free ver-
tices have been inserted, one can find a 2-improvement or prove that none exists in O(m)
time. This is due to the fact that every vertex is only looked at O(1) times and therefore
the same holds for the edges. An implementation proposed by Andrade et al. [2] that we
also use in this thesis is an incremental approach where they maintain a set of candidates
for removal. They extend or reduce this set whenever the solution changes. Also, when it is
clear that a vertex cannot be part of a 2-improvement, they discard it from the set so that
they do not look at it again until the solution changes. This implementation also processes
the available candidates at random. When the set of candidates becomes empty, no more
2-improvements can be made and the local search stops. In this case a local maximum is
reached and the solution is called 2-maximal. Another potential improvement shown were
(2,3)-swaps or 3-improvements. However, maintaining the necessary data structures for an
incremental version of the 3-improvement would be more expensive and thus slower. An-
drade et al. [2] therefore focus their implementation on the simpler 2-improvements.
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3 ILS and NuMVC

1 2 nn− 1

... ... ...
Solution Vertices Free Vertices Non-Free Vertices

Figure 1: Vertex partition used by Iterated Local Search (ILS) algorithm. The first subset
contains the current solution’s vertices. The second subset contains vertices with
a tightness of 0. The third subset contains vertices with a tightness greater or
equal to 1.

The Iterated Local Search (ILS) algorithm computes a random solution and then runs
in a loop until a stopping criterion is met. The loop consists of the steps perturbation,
local search and potential acceptance of the new solution. In the first step, the algorithm
perturbs the solution S in hope of escaping local maxima. This is done by the force routine
which inserts k non-free vertices into the solution and removes their neighbors if they are
in the solution. In most cases k is set to 1 but in rare cases (probability 1/(2|S |)) the
algorithm forces in more vertices. For diversification, in case there are more candidates for
insertion the tie break favors the vertex that has not been in S for the longest time. They
call this length of time the age of the vertex. Also, when the algorithm only forces one single
vertex into S, it does not allow its removal until all other solution vertices have been tried
unsuccessfully. At the end of this first step, the algorithm adds all free vertices to S if there
are any. The second step is the iterative 2-improvement local search we already described.
The final step is deciding whether the new solution S ′ computed in the previous two steps of
this loop iteration becomes the new solution or is discarded. If |S ′| > |S | then ILS obviously
takes the new better result. The algorithm is only allowed to go to a worse solution if the
last |S | iterations were unsuccessful and then does so with a probability 1/(1 + δ · δ∗). δ is
the difference between the two solution sizes and δ∗ is the difference between |S ′| and the
best solution size so far. This is to avoid straying from the current best solution too fast.
Since it is possible to go to a worse solution, the best solution needs to be stored for an
eventual output at the end. The permutation array may not hold the best solution when
the algorithm stops. The stopping criterion for the loop used in most of the experiments in
this thesis are either reaching a time limit or repeating the main loop a number of times.

Algorithm 1: Iterated Local Search (ILS)
Input: Graph G = (V,E)
Output: Independent Set S of G

1 S ← ∅
2 freeV ertices← V
3 nonFreeV ertices← ∅
4 while stopping criterion is not met do
5 S ′ ← Perturb(S)
6 S ′ ← TwoImprovements(S ′)
7 S ← CheckNewSolution(S ′)
8 return S
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3.1 Iterated Local Search (ILS)

Function Perturb(Solution S)
1 α← random number within the interval [1, 2 · |S|]
2 if α 6= 1 then k ← 1 else k ← i+ 1 with probability 1/2i, (i ≥ 1)
3 S ′ ← S
4 if k = 1 then
5 insert random vertex x ∈ nonFreeV ertices into S ′ // force routine
6 foreach v ∈ N(x) do
7 if v ∈ S ′ then remove v from S ′

8 else
9 select κ random non-free vertices // κ is a global constant (here: 4)

10 x← vertex out of the κ random vertices that has not been in the solution for the
longest time

11 N2(x)← non-solution 2-neighborhood of x // vertices two steps away from x
12 insert k vertices from N2(x) ∪ {x} into S ′ // for details, see paper of Andrade et al. [2]
13 remove all v ∈ S ′ from S ′ that are adjacent to the inserted vertices
14 insert free vertices into S ′ until no free vertices remain

Function TwoImprovements(Solution S ′)
1 candidates← S ′

2 while candidates 6= ∅ do
3 select v ∈ candidates at random
4 L(v)← set of 1-tight neighbors of v, sorted by ID
5 if |L(v)| < 2 then candidates← candidates \ {v}
6 else
7 find two non-adjacent vertices x, y ∈ L(v)
8 if such a pair does not exist then candidates← candidates \ {v}
9 else

10 S ′ ← (S ′ \ {v}) ∪ {x, y} // 2-improvement
11 candidates← (candidates \ {v}) ∪ {x, y}
12 foreach u ∈ N(v) do
13 if u is 1-tight then
14 z ← unique neighbor of u in S ′ // new candidate
15 candidates← candidates ∪ {z}

16 return S ′

Function CheckNewSolution(Solution S ′)
1 if |S ′| > |S| then
2 return S ′

3 else
4 return S ′ with probability 1/(1 + δ · δ∗) and S otherwise

13



3 ILS and NuMVC

3.2. NuMVC

For the previously mentioned minimum vertex cover (VC) problem, the NuMVC algo-
rithm by Cai et al. [6] has shown near-optimal heuristic results for large instances so far.
For the pseudocode see Algorithm 2. We need the following additional definitions for the
NuMVC algorithm. The cost of a candidate solution X of graph G with given weight func-
tion w is defined as cost(G,X) = ∑ w(ẽ) where ẽ ∈ E is an uncovered edge. Also, for each
vertex v ∈ V , we denote the cover contribution of v as dscore(v) = cost(G,C ) - cost(G,C’)
where C is the current candidate solution and C ′ = C \ {v} if v ∈ C , or C ′ = C ∪ {v} oth-
erwise. In other words, the value dscore(v) displays a guessed significance to the candidate
solution if NuMVC changes the solution status of v.

NuMVC iteratively solves the k-vertex cover problem which aims at finding a vertex
cover of size k. After greedily computing an initial solution, the goal is to decrease the
solution size by one and exchange vertices until the solution is a proper vertex cover. For
this, the paper proposes two main strategies by the names of two-stage exchange and edge
weighting with forgetting. The two-stage exchange splits up the exchange process into the
two separate stages removing stage and adding stage. First, in the removing stage a vertex
from the candidate solution is removed in linear time. Then, an uncovered edge’s endpoint
is inserted into the solution in the adding stage, which also happens in linear time. Previous
algorithms, as mentioned by Luo et al. [6], that tried doing both stages at once faced a
quadratic time for finding a proper pair of vertices to exchange. Edge weighting is used to
determine which vertex should be removed (by calculating the cover contribution). After
each exchange every uncovered edge’s weight increases by one. However, early events should
not have a great impact much later on and mislead the search. Therefore, once the average
of all edge weights reaches a threshold the algorithm reduces all the weights with a constant
factor between 0 and 1.

The algorithm uses a vertex’s cover contribution to determine whether it should be
removed from the candidate solution C. Note that if vertex v ∈ C it follows that dscore(v)
≤ 0 and dscore(v) ≥ 0 otherwise. For v ∈ C with the lowest absolute cover contribution
they consider v to be the least likely of the solution vertices to be part of the k-cover and
therefore remove v. They also avoid running in circles between earlier local maxima. This
is done by giving each vertex a state. A state of 0 represents that since the vertex’s removal
none of its neighbors have changed their state. A vertex with state 0 is not allowed to be
inserted back into the solution. Whenever a vertex is removed or inserted, all of its neigh-
bor’s states are changed to 1.

In summary, after initializing all edge weights and states with 1 and dscore(v) = deg(v),
NuMVC greedily constructs an initial vertex cover and saves it as current best solution C ∗.
This is followed by the main loop which the algorithm repeats until a specified time limit
is reached. First, the algorithm checks whether the current candidate solution is a vertex
cover. If that is the case NuMVC saves it as the new best solution C ∗ and then removes
a vertex with the highest cover contribution from it. Afterwards it performs the two-stage
exchange, breaking ties for the removal in favor of the vertex which has been in the solution
for the longest time. After exchanging and updating the states the uncovered edges’ weights
are increased by 1. The weight forgetting may happen afterwards if the threshold is reached.
After the loop NuMVC returns C ∗.
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3.2 NuMVC

Algorithm 2: NuMVC
Input: Graph G = (V,E)
Output: Vertex Cover of C∗ of G

1 weight(e) ← 1 for each e ∈ E
2 state(v) ← 1, dscore(v) ← deg(v) for each v ∈ V
3 C ← ∅
4 insert a random uncovered edge’s endpoint into C until it is a vertex cover
5 C∗ ← C
6 while time limit not reached do
7 if there is no uncovered edge then
8 C∗ ← C
9 remove a vertex with the highest dscore from C

10 continue
11 TwoStageExchange ()
12 EdgeWeighting ()
13 return C∗

Function TwoStageExchange
1 select u ∈ C with highest dscore // tie break favors older vertex
2 C ← C \ {u}, state(u) ← 0
3 state(z) ← 1 for every z ∈ N(u)
4 select random uncovered edge e
5 select endpoint v of e with state(v) = 1 and highest dscore // tie break with age
6 C ← C ∪ {v}, state(z) = 1 for every z ∈ N(v)

Function EdgeWeighting
1 weight(e) ← weight(e) + 1 for each uncovered edge e
2 if average edge weight reaches threshold then
3 weight(e) ← bρ · weight(e)c for each uncovered edge e, where ρ ∈(0,1)
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4 Cutting Algorithms

4. Cutting Algorithms
In this section we present the methods aiming at improving current algorithms for

the MIS problem in both speed and result size. These are cutting techniques to ease the
computation of large independent sets in difficult instances and methods to merge selected
cut vertices back into the graph to obtain larger independent sets. Lastly, we perform exact
reductions to simplify graphs as another method to improve computation time.

4.1. Cutting Vertices and Structures
Our intuition is that ILS could get stuck in local maxima more easily on large graphs.

This could be due to vertices of high degree or other properties that we discuss in detail
in this section. Another cause could be structures of multiple vertices. Slowdown on larger
instances is more likely as some properties like very high vertex degrees are expected to
be more frequent on these graphs. In this section we find out which specific vertices or
subgraphs lead to this and remove them before we run ILS in hope of speeding up the
computation and maybe even increase the solution’s size.

Naive Cutting of High Degree Vertices
The first potential cause of slowdown of ILS that comes to mind are very high degree

vertices. The algorithm is largely influenced by vertex degrees since the basic concept of the
(1,2)-swap requires updating all neighbors’ tightnesses. Moving around a high degree vertex
and its neighbors in the algorithm’s partitioning data structure described in Section 3.1 is
expensive. Many real-world graphs follow a scale-free degree distribution. For a comparison
of some of our used graphs’ degree distributions, see Figure 2. This means that with an
increase in vertex set cardinality the highest degrees are likely to increase as well. So, for
the hard instances, despite being sparse graphs over all, these few very high degree vertices
may slow down ILS significantly. This leads to our first algorithm being a naive removal of
the highest degree vertices without updating degrees.

We do this by calculating the degree distribution within the graph. Since we do not
update vertex degrees in this experiment, we can draw all the needed information from this
distribution. This allows us to easily compute the degree λ such that all vertices v ∈ V
with deg(v) > λ can be safely removed and the vertices with deg(v) < λ can be safely kept.
All that is left is cutting enough random vertices with exactly degree λ until the desired
amount of cut vertices is reached.

Cutting Vertices According to Their Core Number
We now take into account that after removing a vertex from the graph, all of its neigh-

bors’ degrees decrease by 1. So instead of naively removing vertices according to their initial
degree we cut them according to their core number. A k-core decomposition iteratively re-
moves the minimum degree vertex to compute the graph’s k-core. Since we want to cut the
highest degree vertices instead we perform the k-core decomposition on the graph’s comple-
ment. Thus, we achieve the complement of a k-core in the original graph which only contains
vertices of degree less than or equal to |V | − k. For sparse original graphs k is close to |V |.
This potentially decreases the upper bound of the remaining vertex degrees more than the
naive cutting technique. As mentioned before, a (1,2)-swap involving a high degree vertex
is expensive. Additionally, whenever ILS performs such a swap, the neighbors’ likelihood
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Figure 2: Degree distribution of some of the graphs we use in our experiments. Road map
ny has no degree higher than 8 and amazon-2008 does not get much higher than
a few hundreds. We expect these two to not slow down ILS. However, we expect
libimseti, cnr-2000 and in-2004 to cause slowdown as they contain several
vertices with degrees well over 10,000.

Algorithm 3: Cutting High Degree Vertices
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 unmark all v ∈ V
2 k ← |V | · f // amount to be cut
3 ∆← maximum degree in G
4 degDistribution : Array[1..∆] of int // initialize with zero
5 foreach v ∈ V do degDistribution[deg(v)]++
6 λ← ∆ + 1
7 sum← 0
8 for int i from ∆ to 0 do
9 if sum+ degDistribution[i] > k then break

10 sum← sum+ degDistribution[i]
11 λ← i

12 while more than k vertices unmarked do
13 mark random unmarked vertex v ∈ V with deg(v) = λ as saved
14 return graph G′ induced by vertices marked as saved
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for being in the next swap are high. The reason is that their change in tightness may allow
new swaps that were not possible before. We therefore aim at minimizing the cut graphs
highest degrees. To do so, we use a bucket priority queue and insert every vertex in the
bucket corresponding to its degree. We then proceed to iteratively remove a highest degree
vertex and put the removed vertex’s neighbors in the next lower bucket. For this cutting
technique we use functionality of KaHIP, a family of high quality partitioning programs by
Sanders and Schulz [21]. It allows us to easily access various graph properties and iterate
over vertices, neighbors and the like. KaHIP provides the bucket priority queue to easily
cut highest degree vertices and update degrees after the removal.

A variation of this technique focuses on the tiebreak for removing vertices with the
same degree. The version from above relies on the internal implementation of the queue’s
method for removing the highest degree vertex which performs a simple pop back at the
highest bucket that is not empty. The bucket queue also uses push back whenever a ver-
tex is inserted so by implementation the default tie break is in favor of the latest vertex
inserted into the highest bucket. We introduce a more thought out tie break that relies on
a dense neighborhood instead of the implementation. We already noted that a swapped
vertex’s neighbors are potentially the next candidates for a (1,2)-swap. In order to reduce
the follow-up computation time, neighborhoods need to be less dense. If there are several
vertices with the same highest degree, we compute the sum of their neighbors’ degrees and
break the ties in favor of the vertex with the highest sum. To save computation time we
calculate these sums for all vertices first and only update them when removing a vertex.

Algorithm 4: Cutting High Degree Vertices with a Bucket Priority Queue
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 k ← |V | · f // amount to be cut
2 ∆← maximum degree in G
3 bucketQueue← new bucket_pq(∆) // call constructor
4 insert each v ∈ V into the bucket corresponding to deg(v)
5 while less than k vertices removed from bucketQueue do
6 v ← bucketQueue.deleteMax()
7 foreach w ∈ N(v) do
8 put w in the next lower bucket

9 return graph G′ induced by remaining vertices in bucketQueue
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Algorithm 5: Cutting High Degree Vertices with a Bucket Priority Queue (Tiebreak with
Dense Neighborhood)
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 k ← |V | · f // amount to be cut
2 ∆← maximum degree in G
3 neighborDegSums : Array[1..|V |] of int // initialized with zeros
4 bucketQueue← new bucket_pq(∆) // call constructor
5 foreach v ∈ V do
6 insert v into the bucket corresponding to deg(v)
7 foreach w ∈ N(v) do
8 neighborDegSums[w]← neighborDegSums[w] + deg(v)

9 while less than k vertices removed from bucketQueue do
10 v ← bucketQueue.DeleteDenseMax()
11 foreach w ∈ N(v) do
12 put w in the next lower bucket
13 neighborDegSums[w]← neighborDegSums[w] - deg(v)

14 return graph G′ induced by remaining vertices in bucketQueue

Function DeleteDenseMax
1 size← size of highest non-empty bucket
2 if size = 1 then
3 v ← bucketQueue.deleteMax()
4 else
5 v ← u ∈ highest bucket with highest neighborDegSums[u]
6 remove v from bucketQueue

7 return v
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Low Degree Reductions and Approximate Reductions
The next idea is based on the papers by Asgeirsson and Stein [3, 4] in which they present

several techniques for the kernelization of graphs. Some of these techniques find vertices
that are definitely in an MIS or definitely in a minimum VC. These vertices then require no
further processing and are removed from the graph entirely thus making the remaining graph
smaller. These methods are called exact reductions and remove easily evaluable vertices (of
low degree) such that ILS does not waste computation time on them. If we only use exact
reductions we can reconstruct an optimal vertex cover for the whole graph after computing
an optimal vertex cover for the reduced graph. The same way, these reductions can be used
for approximate results for the reduced graph which are optimally enhanced when reversing
the reductions. We simply invert which cut vertices we remember for the final solution since
we are aiming for an independent set and not a vertex cover. The exact reductions only take
care of comparably unproblematic vertices, so additional reductions are necessary to really
speed up ILS. Asgeirsson and Stein [3, 4] introduced approximate reductions which may
lead to a worse result but further reduce the complexity of the graph and the total running
time. The approximate reductions remove structures of multiple vertices and guarantee a
worst case approximation ratio of 3/2. Asgeirsson and Stein [3] showed that the removal of
structures like triangles or larger cycles leaves many low degree vertices in the remainder
of the graph. The idea is to then repeat the exact reductions on the low degree vertices.
Iterative use of as many exact reductions as possible followed by few approximate reductions
hopefully results in the speed up of ILS we aim for. Following are the descriptions of the
exact and the approximate reductions.

The exact reductions are only dependent on a vertex’s degree. If the degree of a vertex
v ∈ V is 0, it is certainly part of an MIS. If deg(v) = 1 then v is part of our MIS while its
sole neighbor is cut completely. And lastly, if deg(v) = 2 and its neighbors x,y are adjacent
then there exists an MIS that contains v and neither x nor y. The reason behind this is
that any vertex cover needs to either contain x or y. If we select one of them and remove
the vertex along with all now covered incident edges, v becomes a degree 1 vertex. In such
a case v would never be in an optimal vertex cover and thus, x and y are part of an optimal
vertex cover. We therefore remove them completely and save v as an MIS vertex. As for
approximate reductions, according to Asgeirsson and Stein [3], removing triangles is really
effective for opening up possibilities for exact reductions. Since our approach is not to re-
move all triangles in the graph but only a few, we may select a vertex for removal that is not
part of a triangle. In that case, we remove larger structures, namely 4-cycles and 6-cycles,
if we find them. Although the cycles potentially create more low degree vertices after their
removal, they take longer to find and are less likely. We later describe how to find the cycles
during the implementation details. If our selected vertex is not part of these cycles either,
we remove the neighbors if there are at most 3 as a last resort.

Our algorithm partitions the vertices into 3 subsets: undecided vertices, cut vertices
that are completely removed, cut vertices that are in the MIS (in the following often called
additional MIS vertices). For a visual representation, see Figure 3. Note that there can exist
multiple different MIS and depending on the order of removal the last two subsets’ contents
may differ. Initially all vertices are undecided and we insert them into a bucket priority
queue. Then follows the main loop which consists of the two sections low degree reductions
and structure removal. We check after each cut if enough is removed from the graph and
if that is the case we input the subgraph induced by the remaining undecided vertices into
ILS. Also, we input the additional MIS vertices into ILS. So when ILS finishes computing
the solution for the subgraph we simply add these additional vertices to the solution.
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1 2 nn− 1

... ... ...
Undecided Vertices Cut Vertices Cut Vertices

(Additional MIS Vertices)

Figure 3: Vertex partition used by low degree reductions and approximate reductions cutting
algorithm. Undecided vertices have not been investigated yet. Vertices from the
second subset are cut entirely. Vertices from the third subset are added to the
solution once ILS finished computation.

In the low degree reductions section we iterate over all undecided vertices and check
their degree. If we iterate over all undecided vertices and successfully apply at least one
exact reduction we start another iteration and otherwise go over to the structure removal.
We are aware that the use of a priority queue capable of removing the lowest degree vertex
speeds up the low degree reductions. However, as can be seen in Section 5, this cutting
technique is not promising.

In the structure removal section we iteratively remove the maximum degree undecided
vertex via the bucket queue’s corresponding method. Since we are not aware of any rule
for selecting a starting vertex we choose one with a low probability of being in an MIS. We
then proceed to search for structures this vertex is part of. Even if we find none the vertex
is still cut from the graph to make sure that we progress at all. If we find one, however,
we immediately remove that structure and then continue with the next maximum degree
vertex. First, we search for a triangle containing this vertex. If we do not find one we look
for a 4-cycle, followed by a 6-cycle. These three are found by iterating over neighbors and
their neighborhoods and finding a common neighboring vertex that connects two ends of
a path. For example, to find a 4 cycle we look for a path of length 3 and a 4th vertex
neighboring both ends of the path. If there is none of these structures but the vertex has
only a degree of 2 or 3 we remove all of the neighbors. We continue these structure removals
until we either removed a certain limit of structures or maximum degree vertices.
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Algorithm 6: Low Degree Reductions and Approximate Reductions
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′), set of MIS vertices

1 k ← |V | · f // amount to be cut
2 ∆← maximum degree in G
3 bucketQueue← new bucket_pq(∆) // call constructor
4 number of partition subsets ← 3
5 insert each v ∈ V into subset s1 and the bucket corresponding to deg(v)
6 while less than k vertices cut do
7 foreach v ∈ subset s1 do
8 if enough cut then leave main while loop
9 LowDegReduction (v)

10 if nothing cut in for each loop then
11 while not reached limit of iterations or removals do
12 StructureRemoval ()

13 return graph G′ induced by subset s1, MIS vertices in subset s3

Function LowDegReduction(v)
1 d← deg(v)
2 switch d do
3 case 0
4 put v in partition subset s3

5 case 1
6 put v in partition subset s3
7 put the sole neighbor of v in partition subset s2

8 case 2
9 if the neighbors x,y of v are adjacent then

10 put v in partition subset s3
11 put x,y in partition subset s2

Function StructureRemoval
1 v ← bucketQueue.deleteMax()
2 search for a triangle λ{v, x, y} and remove it from bucketQueue
3 if no triangle found then
4 search for a 4-cycle 3{v, w, x, y} and remove it from bucketQueue
5 if no 4-cycle found then
6 search for a 6-cycle 7{u, v, w, x, y, z} and remove it from bucketQueue
7 if no 6-cycle found then
8 if deg(v) ∈ {2, 3} then
9 remove neighbors of v from bucketQueue

10 put all removed vertices in partition subset s2
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Dense Area 1 Dense Area 2

Figure 4: Two dense areas connected by a line of low degree vertices. Each blue vertex has a
high betweenness centrality since they lie on every path between the dense areas.
They are still very likely to be in the MIS.

Betweenness Centrality
The next algorithm is devoted to betweenness centrality. A vertex has a high between-

ness centrality if it lies on many shortest paths between all of the graph’s vertices. To be
exact, the centrality value is

g(v) =
∑

s 6=v 6=t

σst(v)
σst

where σst is the number of shortest paths between s and t and σst(v) is the number of those
paths that v lies on. We think that vertices with a high centrality have the potential to
slow down ILS. Their central position in the graph may lead to ILS performing swaps more
frequently on them if the local search circles in a central area. To hopefully prevent such
circling we remove them in this experiment. However, the computation of all betweenness
centrality values for general graphs is in O(n3). It requires calculating the shortest paths
between all pars of vertices with the Floys-Warshall algorithm [9]. This is too time con-
suming for large graphs. Since we aim at a low computation time for cutting vertices, we
need a quick heuristic algorithm. Therefore, we use functionality of NetworKit by Staudt et
al. [24], a toolkit for high-performance network analysis. To quickly calculate approximate
betweenness centrality values we utilize NetworKit’s ApproxBetweenness2 class which per-
forms Brandes’ algorithm [11].

We try out two versions of this experiment. One is straight forward where we let Net-
worKit calculate the approximate centrality for all vertices and then cut a percentage of
the most central vertices. We do so by obtaining a vector of vertex-centrality-pairs from
NetworKit and then iterate over it. The other version focuses its cutting only among the
highest degree vertices. So when iterating over the most central vertices we only remove
those whose degree is high enough. A simple case where this should lead to much better
results is a graph with two dense areas that are connected via a path of degree 2 vertices,
see Figure 4. All of these vertices lie on all paths between the two areas. This causes their
betweenness centrality to be very high. However, every second vertex of the path should be
in an MIS so we do not want to remove the entire path.
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Algorithm 7: Betweenness Centrality Cut
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 k ← |V | · f // amount to be cut
2 betweenness← ApproxBetweenness2(G) // constructor for betweenness algorithm
3 betweenness.run()
4 ranking ← betweenness.ranking() // vertex-centrality-pairs
5 for int i from 1 to k do
6 remove remaining vertex with highest centrality
7 return graph G′ induced by remaining vertices

Algorithm 8: High Degree Betweenness Centrality Cut
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 k ← |V | · f // amount to be cut
2 betweenness← ApproxBetweenness2(G) // constructor for betweenness algorithm
3 ∆← maximum degree in G
4 bucketQueue← new bucket_pq(∆) // constructor
5 insert each v ∈ V into the bucket corresponding to deg(v)
6 λ← DegreeLimit() // we cut only among 20% highest degree vertices
7 betweenness.run()
8 ranking ← betweenness.ranking() // vertex-centrality-pairs
9 for int i from 1 to k do

10 remove remaining vertex v with deg(v) ≥ λ and highest centrality
11 return graph G′ induced by remaining vertices

Function DegreeLimit
1 λ← 0
2 sum← 0
3 for int i from 0 to ∆ do
4 if sum + size of bucket i > 0.8 × |V | then
5 break
6 sum← sum + size of bucket i
7 λ← i

8 return λ
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Clustering
Since all previous algorithms were applied to the graph as a whole we now perform

the cutting on smaller components of the graph. We do this by clustering the graph. This
means, that we partition the graph into dense subgraphs that are loosely connected. Each
of these subgraphs, called clusters, may feature high degree vertices that can keep ILS in
a local maximum. If we cut the highest degree vertices globally we may only cut vertices
from specific sections of the graph while leaving other parts mostly untouched. To better
distribute the cutting over the whole graph we cut a selected percentage of high degree
vertices within each cluster. After running the clustering algorithm, we examine all vertices
and determine their degree with regard to their cluster. According to these local degrees
we construct a bucket priority queue for each cluster and cut the specified percentage of
highest local degree vertices from every cluster. The subgraph induced by the remaining
vertices is the input for ILS.

Algorithm 9: Cut in Cluster
Input: Graph G = (V,E), cutting factor f
Output: Cut Graph G′ = (V ′, E ′)

1 clustering ← PLP(G) // constructor
2 clustering.run()
3 clusters← clustering.getPartition()
4 foreach c ∈ clusters do
5 HighDegreeClusterCutting (c)
6 return graph G′ induced by remaining vertices

Function HighDegreeClusterCutting(cluster c)
1 kc ← |c| · f // amount to be cut in c
2 foreach v ∈ c do
3 compute the degree degc(v) with regard to c
4 ∆c ← maximum degree with regard to c
5 bucketQueue← new bucket_pq(∆c) // constructor
6 insert each v ∈ V into the bucket corresponding to degc(v)
7 for int i from 1 to kc do bucketQueuec.deleteMax()
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4.2. Inserting Cut Vertices

After discussing methods to simplify graphs by removing vertices before running ILS,
we now have a look at inserting vertices back into the graph after ILS reached a decent
result. When cutting vertices we may cut MIS vertices. Our goal for this section is to
describe algorithms that take advantage of the cut, that is, achieving a speed up of ILS, and
then consider the cut vertices. This boost should quickly deliver acceptable independent
set sizes. When progression slows down we introduce cut vertices back into the graph such
that ILS can then select from more vertices. We think that this method can lead to larger
independent sets. We provide a larger input that contains both the cut graph that ILS
starts with and the full graph as well as a list of the vertices that have been cut. This makes
changing the input graph easier.

Insertion Only
First, we try different methods of inserting vertices. We compare the effects of inserting

random cut vertices and inserting only the cut vertices with the lowest degrees. Inserting
the lower degree vertices first has a higher chance of still leaving those vertices out that slow
down ILS. It is unclear whether a gradual insertion or inserting everything at once is more
effective to achieve our goal. On the one hand, inserting everything at once may cause ILS
to instantly get stuck in a local maximum. On the other hand, gradual insertion may be
too slow, canceling the advantage we get from cutting. For this reason, we try a number of
different insertion speeds to find the sweet spot. After cutting a small portion of the graph
we insert the cut vertices either randomly or ordered. An ordered insertion meaning that
we choose the cut vertices with the lowest degree. The insertion speeds are described in
detail in Section 5.

Algorithm 10: Insert Cut
Input: Graph G = (V,E), Subgraph G′ = (V ′, E ′) of G,

Set C of cut vertices ordered by degree
Output: Independent Set S

1 compute cut graph G′
2 run ILS on G′ until progression slows down to get solution S
3 map IDs of S from G′ to G
4 while more insertions to be done do
5 G′′ ← Insert(G′, C)
6 map IDs of S from G to G′′
7 if more insertions to be done then
8 run ILS on G′′ starting with S until progression slows down
9 else

10 run ILS on G′′ starting with S until stopping criterion met
11 map IDs of S from G′′ to G
12 return S
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Function Insert(graph G′, set of vertices C)
1 if using random insertion then
2 select vertices verts from C at random // selection increases in size
3 else
4 select lowest degree vertices verts from C // selection increases in size
5 G′′ ← graph induced by G′ ∪ verts
6 return G′′

Swapping In and Out
In the next algorithm we do not only insert vertices but also occasionally swap them

with other cut vertices to hopefully escape local maxima. A random insertion potentially
inserts all the vertices that keep ILS in one of these maxima. Thus, we think repeatedly
changing which cut vertices are taken back into the graph eventually leads to a near-optimal
composition of vertices. We try to exploit these coincidental benefits whenever possible. The
algorithm is otherwise close to identical to the insertion-only algorithm. After the initial
computation of ILS we insert most of the cut vertices randomly and keep this size until the
end of the algorithm. However, instead of more insertions we take out the inserted vertices
again and insert the same amount of cut vertices randomly yet again. If we remove vertices
that have already been part of the best solution so far, we need to save that result in case
it remains the best solution until the end.

Algorithm 11: Swap Cut
Input: Graph G = (V,E), Subgraph G′ = (V ′, E ′) of G,

Set C of cut vertices ordered by degree
Output: Independent Set S

1 compute cut graph G′
2 run ILS on G′ until progression slows down to get solution S
3 map IDs of S from G′ to G
4 S ′ ← S
5 while time limit not reached do
6 select vertices verts from C at random // always select the same amount
7 G′′ ← graph induced by G′ ∪ verts
8 map IDs of S from G to G′′
9 run ILS on G′′ starting with S until progression slows down or time limit reached

10 map IDs of S from G′′ to G
11 if |S| > |S ′| then S ′ ← S

12 S ← S ′

13 return S
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4.3. Exact Reductions

The final set of algorithms is about performing exact reductions that can be reverted
when done computing on the reduced graph. We use the exact reductions presented by
Akiba et al. [1]. The reduction algorithm greatly reduces the size of the graph.

As for the simpler reductions, one of them is the removal of a vertex with degree 1 and
its neighbor. As seen with the low degree reductions earlier, the degree 1 vertex is in an
MIS. Moreover, if a vertex v with deg(v) = 2 has two non-adjacent neighbors u,w then all
three are reduced to a vertex v′. Now, N(v′) = N(u) ∪ N(w) \ {v}. If v′ is in an MIS of the
reduced graph then {u,w} is in an MIS of the original graph. If v′ is not in an MIS, however,
then v is in one. Another simple reduction can be applied when a vertex v’s neighborhood
lies completely in another vertices’ neighborhood. In this case v is called dominated and
part of an MIS. These simple reductions are illustrated in Figure 5.

The more complex reductions have the names LP relaxation, unconfined, twin,
alternative and packing.
(i) LP Relaxation:

As for LP relaxation, the MIS problem can be formulated as a linear programming
relaxation with the solution values xv ∈ {0, 1

2 , 1} [20]. It can be solved with bipartite
matching, that is, maximize

∑
v∈V

xv, where xu +xv ≤ 1 for u, v ∈ V and xv ≥ 0 for v ∈ V .
A vertex v with xv = 1 lies in the MIS and is therefore removed from the graph.
(ii) Unconfined [26]:

Whether a vertex v is unconfined is determined by the following small program: Let
S = {v} initially. Now, search for u ∈ N(S) where |N(u) ∩ S| = 1 and |N(u) \N [S]| mini-
mal. If no such u can be found, then v is confined. If N(u)\N [S] = ∅, then v is unconfined.
If N(u) \N [S] = w, then insert the single vertex w into S and repeat the program. If none
of the above cases apply, then v is confined. Unconfined vertices can be removed from the
graph as there exists an MIS that contains no such vertices.
(iii) Twin [26]:

Two vertices u, v are called a twin if their neighborhoods are equal and u, v have degree
3. If the graph induced by N(u) has any edges, add u, v to the independent set and remove
u, v,N(u) from the graph. Otherwise, reduce u, v,N(u) to the new vertex w that is con-
nected to the remains of the set of vertices at distance 2 from u. These are all the vertices
that are adjacent to u, vorN(u) but not part of them. If w is in the independent set for the
reduced graph, then N(u) is in the independent set for the original graph. Otherwise, u, v
are in the independent set.
(iv) Alternative [26]:

Two sets of vertices A,B are called alternative if |A| = |B| ≥ 1 and there exists an MIS
S with S ∩ (A ∪ B) = A or S ∩ (A ∪ B) = B. Akiba et al. [1] introduce two structures
that are alternatives, namely funnel and desk. The vertex sets {u} and {v} are called a
funnel if u, v are adjacent and N(v) \ {u} induces a complete graph. The sets A = {a1, a2}
and B = {b1, b2} are called a desk if the following things hold: a1b1a2b2 is a chordless 4-
cycle, the 4 vertices have degree of at least three, N(A) ∩ N(B) = ∅, |N(A) \ B| ≤ 2 and
|N(B) \A| ≤ 2. Given two alternative sets A,B, the sets A,B and N∩ = N(A)∩N(B) can
be removed from the graph. Afterwards, each a ∈ Ā = N(A) \ N∩ is connected with each
b ∈ B̄ = N(B) \N∩ via an edge. If Ā has vertices in an MIS of the reduced graph, then B
has vertices in an MIS of the original graph, analogous for B̄ and A.
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Figure 5: Simple reductions. (a) Degree-1 vertex v is in an MIS while neighbor w is in a
minimum VC. (b) Degree-2 vertex v has two non-adjacent neighbors u,w. We
remove the three vertices and introduce the new vertex v′ which has the combined
neighborhoods of u and w. If v′ is in an MIS for the reduced graph then u,w are
in an MIS of the original graph. Otherwise v is in an MIS. (c) v’s neighborhood
lies completely in w’s neighborhood so v is in an MIS.

(v) Packing:
Finally, for the packing reduction, Akiba et al. [1] introduce constraints

∑
v∈S

xv ≤ k,
where vertex set S is non-empty and xv = 0 if v is part of an MIS and 1 otherwise. A
package constraint is added when a vertex is definitely excluded or included from the inde-
pendent set (e.g., if the vertex is unconfined or confined). If vertex v is excluded from it,
xv is removed from the constraints and k reduced by 1. In the easy case k = 0, the graph
induced by S must only contain vertices of degree 0 and therefore S is in an MIS and can be
removed alongside N(S). The other cases are complex and described in detail in the paper
by Akiba et al. [1].

Many of the instances tested can be reduced to an empty graph. In this case, simply
reverting the reductions automatically leads to an optimal independent set. Like the previ-
ous set of algorithms about insertions, we combine the reductions algorithm with our code
of ILS.

Reductions Only
This basic algorithm consists of reducing either the complete graph or a cut version

and then letting ILS run on the reduced graph. The reduction reduces the graph to its
kernel such that ILS does not waste time on parts of the graph that can easily be evaluated.
Cutting beforehand may further simplify the graph to increase the speed up of ILS. We
then proceed to run ILS normally until the specified time limit is reached or the main loop
repeats a certain number of times. Afterwards, we extend the independent set found for the
reduced graph to an independent set for the whole graph by reverting the exact reductions.
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Algorithm 12: Exact Reductions
Input: Graph G = (V,E)
Output: Independent Set S

1 read the graph G
2 adjVector ← adjacency vector for G
3 redAlg ← reductions_algorithm(adjVector) // constructor
4 G′ ← redAlg.reduce_graph(G)
5 get ID map from G′ to G
6 run ILS on G′ until stopping criterion is met to get solution S
7 map IDs of S from G′ to G
8 return S

Reduction Swap
Expanding on the previous algorithm we now let ILS run until it reaches results similar

to those of the reductions-only algorithm. Afterwards, we perturb the current solution by
taking vertices out of it to hopefully leave local maxima. After the perturbation we select
a subgraph for which we find the MIS exactly and add it to the perturbed solution. These
steps are repeated until a stopping criterion is met and are now described in more detail:
We perturb the current solution (with one of four techniques described later) and then
construct the subgraph that contains all of the reduced graph’s vertices that are neither in
the current solution nor its neighborhood. The neighborhood cannot contain new solution
vertices as their tightness is greater than zero. This way, an independent set computed for
this subgraph is guaranteed not to be adjacent to the perturbed solution. Thus, we can
simply add it to the perturbed solution without any complications. We get the subgraph’s
MIS exactly by using the reduction algorithm which reduces the subgraph to its kernel.
After adding this MIS to the perturbed result we check whether our new solution trans-
lates to a larger independent set in the original graph. We extend it with the reduction
algorithm to check its true size by reverting the original reductions. If we reached a new
best size, we store the large independent set of the original graph explicitly and then repeat
the loop on the reduced graph. In short, the difference to the reductions-only algorithm is
to change the strategy after reaching similar result sizes. We think that difficult instances
have kernels that can keep ILS in local maxima in such a way that our previous strategies
are not enough to escape. For this reason we make larger leaps to more distant solutions
and use the reduction algorithm for computing a subgraph’s MIS instead of ILS. We try the
following four variations for the solution perturbation.

k-Core Removal
The first removal technique iteratively removes a percentage of vertices with the highest

degree from the solution. This is very similar to the second cutting technique we introduced
earlier. We think that these vertices are the unlikeliest of the current solution vertices to be
true MIS vertices. The perturbation repeatedly selects the highest degree solution vertex,
marks it as a non-solution vertex and then updates the neighbors’ degrees. Note that in this
context, removal means taking a vertex out of the solution and not cutting it completely
from the graph.

Neighborhood Removal
The second version additionally removes solution vertices that are two steps away from
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the vertices cut in the first version. We cannot remove the direct neighbors since they cannot
become part of the solution. If we only remove the vertices we consider difficult to process,
like in the first technique, the resulting subgraph may be too small. A small graph has a
low chance of containing more solution vertices than what we had before. Therefore, the
additional vertices added to the subgraph in this version may open up more possibilities for
detecting new solution vertices.

(1,2)-Swaps
The third version, in addition to what we do in the second one, performs a couple of

(1,2)-swaps. The swaps decrease the subgraph’s size and add some vertices to the perturbed
solution prior to running the reduction algorithm. This is to reduce the computation time
required for exactly finding the subgraph’s MIS. While the first reduction swap may remove
too few vertices from the solution, the second one may remove too many. We therefore try
to find a middle ground here. We chose to perform half as many swaps as we removed high
degree vertices.

Random Removal
Finally, the forth version does none of the above but only removes a number of random

solution vertices. We cannot predict the structure of the reduced graph. Thus, the other
three variations potentially construct subgraphs which’s MIS contains exactly the vertices
they removed. If this is the case, the three techniques repeat the same steps without ever
progressing. To avoid this from happening we try a probabilistic approach.

Algorithm 13: ReductionSwap
Input: Graph G = (V,E), Type type of swapping, solution cutting factor f
Output: Independent Set S

1 read graph G
2 adjVector ← adjacency vector for G
3 redAlg ← reductions_algorithm(adjVector) // constructor
4 G′ ← redAlg.reduce_graph(G)
5 run ILS on G′ until progress slows down significantly to get solution S
6 S∗ ← S // best solution so far
7 map IDs of S∗ from G′ to G // extend the solution
8 while time limit not reached do
9 Swapping(type)

10 V ′′ ← all non-solution vertices v /∈ N(S)
11 E ′′ ← (V ′′ × V ′′) ∩ E ′ // E ′ is edge set of G′
12 localAdjVector ← adjacency vector for G′′ = (V ′′, E ′′)
13 localRedAlg ← reductions_algorithm(localAdjVector)
14 Sadd ← localRedAlg.solve() // get exact MIS for subgraph
15 S ← S ∪ Sadd

16 S ′ ← S
17 map IDs of S ′ from G′ to G // extend the solution
18 if |S ′| > |S∗| then S∗ ← S ′

19 S ← S∗

20 return S
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Function Swapping(int type)
1 if type 6= 4 then
2 highDegV erts← SwapA ()
3 if type ∈ {2, 3} then
4 SwapB ()
5 if type = 3 then
6 SwapC ()

7 else
8 SwapD ()

Function SwapA
1 k ← |S| · f // amount to be cut
2 ∆← maximum degree in G′
3 bucketQueue← new bucket_pq(∆) // constructor
4 insert each v ∈ S into the bucket corresponding to deg(v)
5 highDegV erts← ∅
6 while less then k vertices removed do
7 v ← bucketQueue.deleteMax()
8 mark v as non-solution vertex
9 highDegV erts← highDegV erts ∪ {v}

10 put each w ∈ N(v) in the next lower bucket
11 return highDegV erts

Function SwapB
1 TwoStepNeighbors← ∅
2 foreach v ∈ S do
3 if ∃w ∈ highDegV erts: v is two steps away from w then
4 TwoStepNeighbors← TwoStepNeighbors ∪ {v}

5 foreach v ∈ TwoStepNeighbors do
6 mark v as non-solution vertex

Function SwapC
1 perform (1,2)-swaps until predefined limit reached or no more swaps possible

Function SwapD
1 k ← |S| · f // amount to be cut
2 mark k random solution vertices as non-solution vertices
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5. Experiments
In this section we present experiments aiming at evaluating the current algorithms for

the MIS problem as well as our presented techniques. We first compare the two leading al-
gorithms for this subject in depth. Following are cutting techniques to ease the computation
of large independent sets in difficult instances and methods to merge selected cut vertices
back into the graph to obtain larger independent sets. Lastly, we perform exact reductions
to simplify graphs as another method to improve computation time. We discuss the cutting
algorithms in the same order as in the previous section. Each experiments consists of 5 runs
with a time limit of 2 hours each unless stated otherwise. The seeds for pseudo-random
numbers run from 1 to 5 during the presented experiments. For converting graphs from the
DIMACS format to the Metis format used by our cutting algorithms, we apply a conversion
algorithm by Sebastian Lamm. We compute average value curves as follows: We measure
the time whenever an algorithm improves its solution size during each run and merge the
results. The values are then ordered by result size and we compute the mean time value
for each result size. The curve represents these mean values. Steps that would decrease the
curve’s current result size are omitted such that the curve is monotonous. All implemen-
tations are written in C++ and compiled with gcc version 4.9.2 (using the -03 flag). Each
run was performed on one core of a 4 x AMD Opteron 6168 1.9 Ghz (12-Core) CPU with
256GB of RAM running Ubuntu 12.04.

5.1. Graph Instances

The graph instances used in our experiments are from four different families, namely
ROAD, WEB, MESH and SOCIAL. All graphs are undirected and unweighted.

The ROAD family consists of road networks from various countries and are thus large
but very sparse graphs. They are unlikely to have high degree vertices. They are from
the work of Andrade et al. [2] as well as the 9th DIMACS Implementation Challenge for
Shortest Paths1. The importance of road networks with regard to the MIS problem lies in
map labeling algorithms.

Next, the WEB family contains very large real-world graphs used in the works of Ak-
iba et al. [1]. They are, among others, provided by the Stanford Large Network Dataset
Collection2 and the Laboratory for Web Algorithmics3. This family of graphs is especially
important for our experiments as it contains instances we consider difficult for the ILS al-
gorithm such as cnr-2000 and in-2004.

The MESH family contains dual-graphs of well-know meshes that have been triangu-
lated. A dual graph has a vertex for each of the original graph’s faces which in this case are
always triangles. Whenever two faces of the original graph share the same incident edge,
the corresponding vertices are adjacent in the dual graph. This family of graphs was also
used by Andrade et al. [2]. Their importance with respect to the MIS problem lies in the
processing of triangulations. This requires to find a small set of triangles such that every
edge is incident to at least one of the set’s triangles. Almost all vertices of this family’s
graphs have degree three. If our hypothesis about high degree vertices slowing ILS down is
correct we should be able to detect that these graphs do not cause a slowdown.

Finally, the SOCIAL family consists of social networks which are increasingly promi-
1http://www.dis.uniroma1.it/challenge9/download.shtml
2https://snap.stanford.edu/data/
3http://law.di.unimi.it/datasets.php
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nent in real-world data sets. The family features graphs from the Stanford Large Network
Dataset Collection4 and the works of Akiba et al. [1].

As a side note, we also performed preliminary tests on graphs from the 2nd DIMACS
Implementation Challenge which are used by Andrade et al. [2]. However, they are mostly
very small graphs that are not very interesting for our main experiments since they can
mostly be solved exactly and do not cause a slowdown of ILS. We present the final results
for the graphs for which we run all experiments in Tables 2, 3, 4, 5 and 6.

5.2. Comparison of ILS and NuMVC

In order to properly compare the two algorithms we need to invert NuMVC’s result
from a vertex cover to an independent set. To compare the result sizes we simply output
|V |− |S| for NuMVC where S is its resulting vertex cover. We first run ILS and NuMVC on
the graph instances without any preconditioning for two hours each. Then, the measured
result sizes and computation times are the new stopping criteria. This means, if ILS reached
size x and NuMVC reached y, we run ILS until result size y and NuMVC until x to better
compare computation times. If the result size is not reached within the two hour timelimit
the algorithm stops. Then, we do the same with the time values we got from the first set of
experiments to better compare results sizes. These values are the average computation time
needed for a run’s final result size. Note that for time measurement in any experiment, the
time for reading the graph in both ILS and NuMVC is excluded. We did the comparison
on the mesh dragon, the road map ny and the social network libimseti.

Figures 6, 7 and 8 show the average progression of both algorithms over time. The
plots for our 3 different stopping criteria show hardly any differences so we only show the
plots for the 2-hour time limit. It is easy to spot that the computation of the initial solution
is usually quicker in ILS. ILS also often reaches a decent solution quicker than NuMVC
computes the initial solution. Once ILS plateaus, no more significant jumps in solution size
are to be expected. In comparison, NuMVC abruptly reaches a first plateau worse than the
one of ILS and struggles to get out of it. Only after a longer time span, more improvements
are detected that eventually lead to similar solution sizes as ILS. Our assumption is that
the lack of diversification methods keep NuMVC within local maxima. Each iteration of
NuMVC’s main loop only exchanges single vertices. On the other side, ILS occasionally
forces a larger number of non-solution vertices into the solution for greater perturbation.
This can be seen in function TwoStageExchange, line 6 of NuMVC and function Perturb,
line 12 of ILS. As for the result sizes, we found out in preliminary tests that in small graphs,
that is, graphs with less than 5,000 vertices, NuMVC was slightly ahead of ILS. These were
graphs of the 2nd DIMACS Implementation Challenge as mentioned earlier. NuMVC was
more likely to reach optimal results or results slightly better than those of ILS. However,
with growing numbers of vertices ILS takes the lead and outperforms its competitor on very
large graphs. In addition, the much quicker computation of comparable result sizes makes
ILS our clear winner in this comparison. We therefore focus on ILS in all of the following
experiments.

4ttps://snap.stanford.edu/data/
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Figure 6: Comparison of ILS and NuMVC on mesh dragon.
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Figure 7: Comparison of ILS and NuMVC on road map ny.
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Figure 8: Comparison of ILS and NuMVC on social network libimseti

5.3. Cutting Vertices and Structures

The experiments of this section are performed in two parts. First, we cut a percentage
of the graph’s vertices according to the techniques we discussed. They are the naive cut
of high degree vertices, the k-core cut, approximate reductions, betweenness centrality cut
and the cut in clusters. Afterwards, we input the cut graph into the ILS algorithm and
measure the progression of the solution size over time. We performed preliminary experi-
ments indicating that cutting too many vertices reduces the final independent set’s size too
much. Hence we focus on the cutting percentages of 1%, 5% and 10%. However, in most
cases even 10%-cuts cause unsatisfactory outcomes and are thus excluded from most plots.
Note that in all experiments that use cutting techniques, including experiments from the
later sections, the cutting time is included in our time measurements.

Naive Removal of High Degree Vertices:
As anticipated, ILS has problems with progressing on some instances with very high

degree vertices. The various runs may differ much more than in easier cases and the repre-
senting curves are not as steep. For better insight we show the 5 runs in separate curves for
this experiment to show the differences between them. On some graphs like web-Stanford,
in-2004 and cnr-2000, the cutting makes the runs of ILS much more consistent. On the
other side, the runs of ILS without cutting beforehand have varying speeds of progression.
In most cases the different runs’ curves cannot be distinguished at all. Since the direct
influence of the cutting on the progression is easily visible, we conclude that very high de-
gree vertices are the main reason for ILS’s worse progression on some very large graphs.
The amount of removed vertices is also directly correlated with the final result sizes. While
cutting one percent on difficult instances leads to results close to the optimal or best know
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Figure 9: Improvement of ILS on graph web-Stanford after naive cutting. The 5 runs are
much more consistent after the cut and reach their plateau earlier.

results, cutting 5% or more clearly removes many MIS vertices. In some plots we do not
display the curve for 10%-cutting as it has much lower quality, and makes the plots difficult
to interpret. This shows that even the set of 5% highest degree vertices contains thousands
of MIS vertices in the tested graphs. The final results of the 1%-cut are decently sized but
still leave room for improvement. We aim to get closer to the best known results with our
other cutting techniques.

Although improvements on many graphs are promising, not all graphs are suited for
this cutting method. The results for the mesh dragon and the road map ny worsen for
each cut. Running ILS without cutting does not show any significant slowdown and the
runs are already very consistent. The average degrees of these two graphs are 3.0 and 2.8
respectively. All of dragon’s vertices have degree 3 and degrees in ny’s vertex set are not
higher than 8. For this reason, any of the vertices has a similar probability of being part
of an MIS. As a result, any cutting removes MIS vertices and worsens the size of the final
independent set without causing any speed up. This further supports our hypothesis that
very high degree vertices are the main source of ILS’s slowdown. Preliminary tests showed
that even graphs with a highest degree of over one thousand, such as amazon-2008 (1,077)
or citationCiteseer (1,318), do not benefit from cutting. To effectively use our methods,
a graph should have hundreds of vertices with a degree higher than one thousand. For
instances following a power law mostly seen in real-world data this roughly translates to
highest degrees of well over 10,000 or higher.
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Figure 10: Improvement of ILS on web graph in-2004 after naive cutting. The 5 runs are
much more consistent after the cut and reach their plateau earlier. Cutting 10%
leads to unsatisfactory results.
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Figure 11: Improvement of ILS on web graph cnr-2000 after naive cutting. The 5 runs are
much more consistent after the cut and reach their plateau earlier. Cutting 10%
leads to unsatisfactory results.
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Figure 12: Naive cutting on mesh dragon removes too many MIS vertices. The runs were
already consistent before the cut.
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Figure 13: Naive cutting on road map ny removes too many MIS vertices. The runs were
already consistent before the cut.
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Cutting Vertices According to Their Core Number:
From now on, we focus only on 1%- and 5%-cuts and show average value curves instead

of one curve per run. The k-core cutting method usually surpasses its naive cut counterpart’s
solution by several hundreds of vertices. This mostly closes the gap to best known or optimal
results on the difficult instances. The speed up of ILS is also larger in most cases making
this cutting technique a clear victor compared to naive cutting. The only difficult instance
where the k-core result size is below our expectations is cnr-2000. We do not know the
exact reason for this yet. Note, that the k-core cut does not require to actually compute
the full k-core but only remove the percentage of vertices.

Continuing with our dense neighborhood tiebreak, a clear victor cannot be detected.
The dense neighborhood tiebreak leads to a slightly larger speed up of ILS on difficult
instances when cutting only 1%. When cutting 5%, the first version is quicker. As for easier
instances like dragon or bay, the new tiebreak worsens both solution size and speed up.
Since the tiebreak does not deliver clear advantages we do not favor it over the first version
of k-core.
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Figure 14: The k-core cut leads to much better results than the naive cut on road map bay.
However, not cutting is preferred on this graph.
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Figure 15: The k-core cut leads to a better speed up and better final results than the naive
cut on web graph in-2004.
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Figure 16: The k-core cut leads to better final results overall and a better speed up for the
1%-cut than the naive cut on social network web-Stanford.
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Figure 17: The 5% k-core cut leads to better final results than the 5% naive cut on web
graph cnr-2000. The 1% cuts have very similar final results.

 60000

 61000

 62000

 63000

 64000

 65000

 66000

 67000

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

IS
 S

iz
e

Time (seconds)

ILS progression on graph

dragon

No Cut
1% k-Core Cut
5% k-Core Cut

1% Dense Neighborh. Cut
5% Dense Neighborh. Cut

Figure 18: The k-core cut with the dense neighborhood tiebreak on mesh dragon leads to
slightly larger independent sets but takes longer. Not cutting in preferred on
this graph.
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Figure 19: The two variations of the k-core cut show no significant differences on web graph
in-2004.
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Figure 20: The k-core cut without the dense neighborhood tiebreak on road map bay leads
to larger independent sets. Not cutting in preferred on this graph.
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Figure 21: The dense neighborhood tiebreak is slightly faster for the 1%-cut on social net-
work eu-2005 but the final results are indistinguishable.
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Figure 22: There is no clear winner among the tiebreaks result-wise on social network
libimseti. The 5% cuts have slightly better result sizes. We think this is due
to the high percentage of very high degree vertices in this graph, see Figure 2.
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Figure 23: Approximate reductions do not remove the vertices responsible for the ILS slow-
down on web graph cnr-2000. There is no improvement over not cutting.

Low Degree Reductions and Approximate Reductions:
We set the limit for structure removals to the average degree within the original graph.

The limit for removing maximum degree vertices is set to three times that value. Other
parameters may lead to better results but this cutting technique did not prove to be suc-
cessful on the difficult instances. The speed up of ILS is insignificant to non-existent and
the problems we try to solve are still apparent, see cnr-2000. Apparently structures like
triangles, four-cycles and the like have little to no negative effect on the running time of ILS.
The approximate reductions may even cut more MIS vertices than the previous methods.
In addition, the cut for graph in-2004 leads to a slightly worse outcome than not cutting
in the first place.
Betweenness Centrality:

The running time of NetworKit’s betweenness centrality algorithm is linear in its pa-
rameter nSamples. We tried parameter values of 25, 50, 100 and 200 which all lead to
very similar results. However, the higher values resulted in running times too long to be
interesting for our aims, so we use a value of 25. The experiments show that, like with
the approximate reductions, there is no clear connection between the slowdown of ILS and
vertices with a high betweenness centrality. The plotted curves for it mostly have a shape
similar to the computation without any cutting. Even worse, the cutting leads to smaller
independent sets with a longer computation time, see in-2004. Cutting only among the
vertices with the 20% highest degrees slightly improves the outcome but not in any sig-
nificant way (marked as “High Deg. Betw. C. Cut” in figures). Although this method is
better than not cutting on cnr-2000, it is still far off from reaching the results of our other
methods. All in all, this cutting method proves not to be successful.
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Figure 24: Approximate reductions do not remove the vertices responsible for the ILS slow-
down on web graph in-2004. It even leads to further slowdown.
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Figure 25: The betweenness centrality cut worsens the outcome on web graph in-2004 both
in time and result size.

48



5.3 Cutting Vertices and Structures

 118000

 120000

 122000

 124000

 126000

 128000

 130000

 132000

10
-1

10
0

10
1

10
2

10
3

10
4

IS
 S

iz
e

Time (seconds)

ILS progression on graph

ny

No Cut
1% k-Core Cut
5% k-Core Cut

1% Betw. Centr. Cut
5% Betw. Centr. Cut

Figure 26: The betweenness centrality cut worsens the outcome on road map ny both in
time and result size.
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Figure 27: Restricting the betweenness centrality cut to the 20% highest degree vertices
does not lead to promising results on web graph in-2004.
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Figure 28: Restricting the betweenness centrality cut to the 20% highest degree vertices
greatly increases the result sizes on web graph cnr-2000. However, they are still
far behind the k-core cut.

Clustering:
To obtain a clustering quickly we make use of NetworKit’s functionality again. We

utilize NetworKit’s PLP class to get an approximate clustering of the graph. PLP is a
label propagation community detection algorithm. First, it assigns a label to each vertex.
The labels propagate between neighbors to assign them to the same cluster. The denser
a subgraph the more likely the vertices are to accept the same label. Over time the label
changes come close to a halt and the clustering is determined. Each label corresponds to
a cluster.

While visibly making the runs more consistent, cutting high degree vertices in clusters
turns out not to be promising either. The result sizes are worse than those of the naive
cut and especially inferior to those of the k-core cut. Cutting 5% per cluster is already
worse than not cutting at all. In order to reach results similar to the ones of our preferred
technique the distribution of high degree vertices needs to be similar in most clusters. Real
world data usually does not have this property. If we cut the specified percentage within a
cluster of mostly low degree vertices, the probability of removing MIS vertices is high.

Concluding this set of experiments, the preferred method of cutting is definitely the re-
moval of vertices according to their core number. All other methods failed to achieve similar
qualities. The naive cutting lead to a significant speed up but failed to reach the desired
near-optimal solution sizes. The approximate reductions by Asgeirsson and Stein [3], [4] be-
tweenness centrality cut failed at tackling the slowdown problem. Lastly, cutting in clusters
removed too many MIS vertices. However, cutting of any kind in graphs with no or only
very few vertices of degree of about 1,000 or higher has no benefits.
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Figure 29: The k-core cut in clusters on web graph cnr-2000 is both slower and leads to
worse results than the global k-core cut.
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Figure 30: The k-core cut in clusters on web graph in-2004 is both slower and leads to
worse results than the global k-core cut.
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5.4. Inserting Cut Vertices

For this set of experiments we use the cutting technique where we cut the highest de-
gree vertices with a bucket priority queue. The size of removal is 5% of the graph’s vertices.
Preliminary experiments showed that this percentage leads to a large speed up and accept-
able independent set sizes. We use the algorithm without the dense neighborhood tiebreak
since the tiebreak computation is usually a bit slower for this cut size. After the cutting we
transmit the cut graph along with the cut vertices to ILS. The algorithm runs until there are
100,000 itertions of the main loop without improvements and we then perform the insertion
techniques. In between insertions ILS runs its local search until there are 500,000 iterations
without any progress before we move on with the next insertion. We mark every insertion
in the plots with a cross.

Insertion Only:
We investigate 5 different versions of inserting vertices. Preliminary tests showed the

clear winner being insertion steps in decreasing sizes. So, while describing the outcome of
all 5 experiments, note that the proper experiments were only made with the last version.
Also note, that we did not include the computation time for cutting in the preliminary tests.
In the first experiment we insert 4/5 of the cut vertices randomly and then run ILS until
the time limit is reached. The problem with random insertion is that potentially most of
the vertices responsible for ILS’s slowdown get back into the graph. This cancels out the
speed up and may even result in independent sets smaller than when we do not insert at all.

The remaining 4 experiments therefore only insert the cut vertices with the lowest de-
grees. First, we insert 4/5 of the cut vertices like in the previous experiment. In a second
insertion we insert the remaining fifth of the vertices and let ILS run on the complete graph.
This method of insertion combines a rapid initial improvement with a decently sized final
independent set. One negative aspect is that after the second insertion progress decreases
too quickly. The second version inserts a fifth of the cut vertices at a time until the full
graph is reconstructed, meaning that there are 5 insertions. For some graphs, like cnr-2000
or in-2004, several of these insertions are needed before any difference to not inserting at
all is noticeable. In addition, the insertions happen to late to compete with the 1%-cut
curve. We conclude that the first insertions need to be larger to cause an effect and that the
optimal time for insertions varies depending on the method and graph. A better method of
determining when to insert may be roughly approximating the curves’ gradients. The third
experiment inserts all cut vertices in 10 equally sized portions. As anticipated, the same
features as the ones from the previous experiment are present.

Lastly, we decrease the sizes of insertions in the final experiment. The specified per-
centages refer to the size of the whole graph. Still, only the cut vertices are inserted and
no others. Starting with an insertion of 4%, we continue with 0.5%, 0.3%, 0.1% and finally
the last 0.1% to create the whole graph. This method shows the best results out of the
insertion experiments. When ignoring the cutting time, it combines desired features of the
5%-cut curve and the 1%-cut curve. Fast initial result improvements and large final results
are achieved.

However, when taking the cutting time into consideration, some of the advantages can-
cel out. This is due to the fact that the additional output required for the insertion (that is,
the cut vertices and the complete graph) requires too much time. Thus, we lose the speed
up advantage of the 5%-cut. We can see in the plots that ILS catches up with the better
curves after insertion but we do not achieve noteworthy benefits from this.
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Figure 31: Ordered insertion of cut vertices in decreasing sizes on mesh dragon. Each cross
marks an insertion in one of the runs. The result sizes of the other curves are
reached after the insertion but not cutting is the better option on this graph.
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Figure 32: Ordered insertion of cut vertices into web-graph in-2004. Each cross marks an
insertion. The curve almost catches up with the 1% k-core cut. The slower initial
computation may be due to the larger output of the cutting algorithm.
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Figure 33: Swapping the cut vertices in and out does not work properly on web graph
cnr-2000. After the first insertion (marked with a cross) the solution size slowly
increases leaving the swap inactive.

Swapping In and Out:
Now, we randomly insert 4/5 of the cut vertices back into the graph and remove them

again before we perform the next insertion of the same size. Note that when taking the
inserted vertices out of the graph again we may lose a number of solution vertices. This
fact as well as the shown downsides of random insertion lead to little to no improvements.
On graph cnr-2000, ILS slowly improves its solution size leaving the swapping inactive
entirely. The slow progression keeps the loop limit from activating a swap. The insertions
of the previous paragraph show the same behavior on cnr-2000. As for the mesh dragon,
the previous insertions are more successful then swapping since the swaps cannot exceed
the 1%-cut’s curve. Still, this is of no real interest considering that cutting is not helpful
for this kind of graphs.

As a conclusion to this set of experiments, insertions of any kind are irrelevant when
the cutting time is taken into consideration. The hope was to combine the advantages of
different cuts’ curves but this requires to keep the quick output of larger cuts which we
could not achieve.
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Figure 34: Swapping the cut vertices in and out leads to no improvement on mesh dragon.
After the initial insertion (low crosses) the 1% k-core cut is reached but all swaps
(all other crosses) have no effect.

5.5. Exact Reductions

This set of experiments does not use any of the cutting techniques except for the first
experiment. In general, we reduce the graph with the exact reductions by Akiba et al. [1]
and then run ILS on the reduced graph.

Reductions Only:
This experiment is performed on the original, uncut graphs. We also performed prelim-

inary tests on cut graphs with a removal of either 0.2%, 0.5% or 1%. However, we did not
spot any remarkable differences between the cutting sizes making the cutting potentially
redundant. On many graphs this method leads to optimal or near-optimal results consis-
tently. On the more difficult instances the results exceed those of our cutting and inserting
experiments. Both cardinality of the final independent set and computation time are better.
The algorithm often reaches the best known results. The speed up is also remarkable in
many cases as the algorithm reaches very large results sizes shortly after the initial compu-
tation. This method also does not lead to worse results than only running ILS on graphs
with few or no high degree vertices such as meshes and road maps. However, the reduction
can take longer than the cutting when all degrees are roughly the same. This can be seen
on mesh dragon which only has degree-3 vertices. Kernelization on such graphs is difficult
as the vertices are too similar.
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Figure 35: The exact reductions lead to a speed up on road map bay which we could not
achieve with any of the cutting techniques.

Reduction Swap:
Note, that the following descriptions are from preliminary results. We did not repeat

them with larger time limits as the outcome was not promising enough. In these final ex-
periments we try removals of 1%, 5%, 10% and 25% of the solution. As a reminder, in
this experiment we do not cut the vertices completely from the graph but just take them
out of the solution. These percentages only apply to the first and forth version of reduc-
tion swap which remove the highest degree vertices with a bucket priority queue or remove
random vertices. The second and third version continue their specific removals after the
percentage of highest degree vertices is taken out of the solution. The initial solution is
computed by running ILS after the reduction until its main loop repeats 20 million times
without progress. The preliminary tests featured no distinguishable differences between cut
sizes. Unfortunately, the improvements caused by the swaps were insignificant, that is, 0 to
3 vertices. The initial solutions are decisive while the swaps fail at enhancing them.

As last remarks for this section we consider the exact reductions to have the high-
est potential for improving current algorithms for the MIS problem. They are superior to
our cutting methods on nearly all graphs both in terms of speed up and final result size.
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Figure 36: A kernelization on mesh dragon is difficult as all vertices have the same degree.
Despite being slower than the cutting techniques, this method delivers result
sizes on par with not cutting.
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Figure 37: The exact reductions lead to both a better speed up and final result size on web
graph cnr-2000.
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Figure 38: The exact reductions lead to very large independent sets very quickly on social
network web-Stanford despite needing more time to compute the initial solution.

Table 1: Graphs used in every experiment.
NAME n m avg. deg.

cnr-2000 325557 2738969 16.8264
dragon 150000 225000 3

in-2004 1382908 13591473 19.6564
libimseti 220970 17233144 155.977

ny 264346 365050 2.76191

Table 2: Final Results for all experiments on graph cnr-2000. We show the worst (MIN),
average (AVG) and best (MAX) independent set found over 5 runs.

EXPERIMENT TYPE MIN AVG MAX
No Cut 229733 229777.20 229821

Naive Cut (1%) 229973 229979.59 229986
K-Core Cut (1%) 229962 229971.80 229984

Dense Neighborhood Cut (1%) 229964 229971.00 229977
Approx. Reductions Cut (1%) 229776 229791.80 229809

Betweenness Centrality Cut (1%) 229431 229440.80 229446
High Degree Betw. C. Cut (1%) 229856 229865.59 229881

Cluster Cut (1%) 229830 229835.80 229844
Ordered Insert Cut 229956 229960.20 229965

Swap Cut 229876 229883.41 229893
Exact Reductions 229986 229998.80 230014
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5.5 Exact Reductions

Table 3: Final Results for all experiments on graph dragon. We show the worst (MIN),
average (AVG) and best (MAX) independent set found over 5 runs.

EXPERIMENT TYPE MIN AVG MAX
No Cut 66487 66490.20 66495

Naive Cut (1%) 66214 66218.00 66222
K-Core Cut (1%) 66264 66268.20 66275

Dense Neighborhood Cut (1%) 66290 66294.20 66297
Approx. Reductions Cut (1%) 66105 66109.80 66115

Betweenness Centrality Cut (1%) 65921 65927.00 65938
High Degree Betw. C. Cut (1%) 65930 65933.60 65936

Cluster Cut (1%) 66163 66167.60 66176
Ordered Insert Cut 66483 66489.80 66501

Swap Cut 66236 66240.40 66243
Exact Reductions 66493 66496.20 66500

Table 4: Final Results for all experiments on graph in-2004. We show the worst (MIN),
average (AVG) and best (MAX) independent set found over 5 runs.

EXPERIMENT TYPE MIN AVG MAX
No Cut 895192 895260.38 895286

Naive Cut (1%) 895982 895991.00 896010
K-Core Cut (1%) 896646 896653.62 896657

Dense Neighborhood Cut (1%) 896650 896657.38 896662
Approx. Reductions Cut (1%) 895227 895269.81 895344

Betweenness Centrality Cut (1%) 893448 893515.38 893557
High Degree Betw. C. Cut (1%) 895424 895459.62 895489

Cluster Cut (1%) 896152 896159.00 896164
Ordered Insert Cut 896541 896560.81 896581

Swap Cut 896200 896230.81 896265
Exact Reductions 896753 896757.00 896762

Table 5: Final Results for all experiments on graph libimseti. We show the worst (MIN),
average (AVG) and best (MAX) independent set found over 5 runs.

EXPERIMENT TYPE MIN AVG MAX
No Cut 127276 127279.20 127282

Naive Cut (1%) 127281 127282.80 127284
K-Core Cut (1%) 127281 127282.20 127283

Dense Neighborhood Cut (1%) 127282 127282.40 127283
Approx. Reductions Cut (1%) 127273 127275.20 127277

Betweenness Centrality Cut (1%) 127279 127279.20 127280
High Degree Betw. C. Cut (1%) 127277 127278.20 127280

Cluster Cut (1%) 127281 127281.40 127282
Ordered Insert Cut 127253 127265.00 127273

Swap Cut 127273 127277.60 127281
Exact Reductions 127275 127283.00 127289
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Table 6: Final Results for all experiments on graph ny. We show the worst (MIN), average
(AVG) and best (MAX) independent set found over 5 runs.

EXPERIMENT TYPE MIN AVG MAX
No Cut 131456 131463.41 131474

Naive Cut (1%) 131137 131144.20 131151
K-Core Cut (1%) 131250 131263.80 131272

Dense Neighborhood Cut (1%) 131009 131011.60 131015
Approx. Reductions Cut (1%) 131453 131463.41 131474

Betweenness Centrality Cut (1%) 130411 130420.60 130429
High Degree Betw. C. Cut (1%) 131011 131016.60 131025

Cluster Cut (1%) 131389 131398.00 131409
Ordered Insert Cut 131461 131467.00 131476

Swap Cut 131149 131152.41 131159
Exact Reductions 131491 131494.41 131497
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6 Conclusion and Future Work

6. Conclusion and Future Work

6.1. Conclusion

In this thesis we presented a number of methods to speed up local search algorithms for
the maximum independent set problem. In this context, we evaluated a set of combinations
of different algorithms to find the combinations that work best. First, we compared the
current state-of-the-art algorithms usable for this problem, namely ILS and NuMVC. The
comparison showed that ILS is superior to NuMVC on large sparse graphs. Additionally,
we improved running times for ILS significantly especially on difficult instances. Our range
of experiments tackles the removal of specific vertices that may lead to a slowdown of the
algorithm as well as inserting them back later to assure that we did not cut MIS vertices.
In addition, we utilized exact reductions to minimize a graph’s complexity to further speed
up the progression of ILS.

We showed that the removal of high degree vertices according to their core number
boosts ILS’s progress on difficult instances without a loss in solution size and makes the
runs more consistent. Using this cutting technique makes the reinsertion of cut vertices
redundant due to its computation time before running ILS. In comparison, the naive cut,
approximate reductions and betweenness centrality cut failed to achieve similar advantages
as the k-core cut. The best results were achieved by combining exact reductions of the input
graph with ILS. This way, the optimal or best known results were reached very quickly. The
combination of the exact reductions with ILS are therefore our recommendation for finding
very large independent sets on difficult graphs. The benefits of our methods were especially
large on the graphs in-2004 and cnr-2000.

6.2. Future Work

As seen in Section 5, the improvements made by our techniques vary depending on
the difficulty of the instance. The cuts and reductions are redundant on already easy-to-
solve graphs. Therefore, developing methods to quickly determine whether applying our
techniques on a graph is useful or not can further speed up general computations on a set of
graphs. We already outlined the importance of the distribution of the highest degree vertices.
Further investigating optimal thresholds and selecting the processing methods accordingly
avoids wasting computation time. Moreover, there are other cutting methods that have not
been tried yet. For example, KaHIP’s partitioning utilities can be used to break extremely
large graphs into smaller portions. Running our presented algorithms on the subgraphs may
allow one to easily evaluate large independent sets on graphs difficult to handle with current
computation powers. A similar approach is combining the exact reductions with cutting on
the reduced graph. The reductions kernalize a graph and removing just very few of the
kernel’s vertices potentially further reduces the computation time. It needs to be tested
whether this kernel cutting is too destructive on the MIS.
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A. Data Structures for Cutting Algorithms

We store the graph in an adjacency list which is a vector containing a vector per vertex.
A vertex’s vector stores the vertex’s neighbors. We also store edges in a vector where an
edge is always directed and the only vertex stored per edge is its destination. A vertex stores
its first outgoing edge’s ID. This allows us to quickly iterate over a vertex v’s neighbors in
O(deg(v)) and easily insert and remove vertices from the graph. In addition, for large sparse
graphs an adjacency list does not waste as much space as an adjacency matrix. Another
useful data structure we use is a bucket priority queue. It provides containers for a discrete
interval such that we can insert vertices in buckets corresponding to their degree. Since one
of our main objectives is to remove high degree vertices, the bucket priority queue is very
advantageous as it provides this exact functionality plus the ability to easily update the
degrees of the removed vertices’ neighbors.
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